Fractal geometry (Sierpinski tetrahedron)
- Peter Mortier
- Mar 12
- 1 min read
Updated: 1 day ago
For some basic information about fractals, please check the Menger sponge example. In this example, we will show how to generate a Sierpinski tetrahedron or tetrix.
At the bottom, you can find the resulting 3D model for different levels.
from hellotriangle.mesh import Mesh
import numpy as np
# create equilateral tetrahedron
l = 1.0
h1 = np.sqrt(3.0)/2.0
h2 = np.sqrt(6.0)/3.0
points = [[0.0, 0.0, 0.0],
[l, 0.0, 0.0],
[l/2.0, h1, 0.0],
[l/2.0, h1/3.0, h2]]
conn = [[0, 1, 2, 3]]
tet = Mesh(points, conn, eltype='tet4')
# create Sierpinski tetrahedron
level = 5
for i in range(level):
tet1 = tet.translate([l, 0.0, 0.0])
tet2 = tet.translate([l/2.0, h1, 0.0])
tet3 = tet.translate([l/2.0, h1/3.0, h2])
tet = (tet + tet1 + tet2 + tet3).scale(0.5)
# draw
draw(tet, color = "#006992")




